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We develop a wave packet approach to treating the electronically nonadiabatic reaction dynamics of O(1D)
+ H2 f OH + H, allowing for the 11A′ and 21A′ potential energy surfaces and couplings, as well as the three
internal nuclear coordinates. Two different systems of coupled potential energy surfaces are considered, a
semiempirical diatomics-in-molecules (DIM) system due to Kuntz, Niefer, and Sloan, and a recently developed
ab initio system due to Dobbyn and Knowles (DK). Nonadiabatic quantum results, with total angular momentum
J ) 0, are obtained and discussed. Several single surface calculations are carried out for comparison with the
nonadiabatic results. Comparisons with trajectory surface hopping (TSH) calculations, and with approximate
quantum calculations, are also included. The electrostatic coupling produces strong interactions between the
11A′ and 21A′ states at short range (where these states have a conical intersection) and weak but, interestingly,
nonnegligible interactions between these states at longer range. Our wave packet results show that if the
initial state is chosen to be effectively the 1A′ state (for which insertion to form products occurs on the
adiabatic surface), then there is very little difference between the adiabatic and coupled surface results. In
either case the reaction probability is a relatively flat function of energy, except for resonant oscillations.
However, the 2A′ reaction, dynamics (which involves a collinear transition state) is strongly perturbed by
nonadiabatic effects in two distinct ways. At energies above the transition state barrier, the diabatic limit is
dominant, and the 2A′ reaction probability is similar to that for 1A′′, which has no coupling with the other
surfaces. At energies below the barrier, we find a significant component of the reaction probability from long
range electronic coupling that effectively allows the wave packet to avoid having to tunnel through the barrier.
This effect, which is observed on both the DIM and DK surfaces, is estimated to cause a 10% contribution
to the room temperature rate constant from nonadiabatic effects. Similar results are obtained from the TSH
and approximate quantum calculations.

I. Introduction

The reaction

has long served as the prototypical insertion reaction. It is
exoergic by almost 2 eV, and the lowest adiabatic potential
surface (11A′) that correlates to both reactants and products
includes a deep well associated with the ground electronic state
of H2O. (The zero-point energy of H2O is ≈5 eV below the
zero-point energy of the products.) Both products are easily
detected, so there have been numerous experimental studies of
thermal rate coefficients,1,2 isotope effects,3-6 product vibrational
distributions,7 rotational distributions,8,9 integral cross sections,10

and angular and translational distributions.11-16 There have also
been several theoretical studies of the ground singlet state
potential surface17-21 and its reaction dynamics.22-28

Recently there has been increasing interest in the reaction
dynamics associated with excited states that also correlate to
O(1D) + H2.29-35 Figure 1 shows a schematic diagram of the

key electronic states for collinear and nearly collinear OHH
geometries. The bottom panel considers collinear OHH geom-
etries. Actually, O(1D) splits into aΣ, a doubly degenerateΠ,
and a doubly degenerate∆ component, so that the reactants in
reaction 1 correlate with five electronic states. The∆ state is
purely repulsive, and can only play a role in the reaction
dynamics through its Coriolis interactions with the other states,
which turns out not to be very important.35 This state is not
depicted. TheΣ surface is the lowest energy surface while the
reagents approach, with a very small barrier (< 0.5 kcal/mol
or 0.02 eV), but it correlates to the excited A2Σ state of the OH
product, and thus it cannot contribute to reaction. Only theΠ
state connects the reagent and product states, but there is a
barrier to reaction of around 2 kcal/mol (0.09eV). The top part
shows how this picture changes for bent geometries. Here we
show only the 1A′ and 2A′ components that come from theΣ
and Π states. (For simplicity, we often omit the singlet spin
labels on the various electronic states.) These have a conical
intersection at the position of theΣ/Π crossing, making it
possible for reaction to occur out of either state. Not shown in
this panel is the 1A′′ state, which is the other component theΠ

O(1D) + H2(X
1Σg

+) f OH(X2Π) + H(2S) (1)
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state in the bottom panel. This has the same collinear barrier as
2A′, but a lower bending frequency at the saddle point, so one
expects that the reaction probability from this state will be larger
than that from the 2A′ state. Note, however, that the 2A′ reaction
probability would be zero if the dynamics were purely adiabatic,
while the 1A′′ state is not coupled to the other states, and is
reactive in the adiabatic limit.

Although the behavior of the potential surfaces in Figure 1
is now well established, the role of the excited states in the
reaction dynamics of reaction 1 is still the subject of considerable
confusion. Interest in excited state effects has arisen recently
as a result of several experiments10,12,14-16 which show effects
that are not consistent with a simple insertion reaction. In
particular Che and Liu12 measured differential cross sections
for the O(1D) + HD at a collision energy of 4.55 kcal/mol (0.197
eV) and found substantial deviation from the forward-backward
symmetry found for theoretical studies based on the ground state
surface.21 In addition, similar measurements by other groups15,16

on O(1D) + H2, HD and D2 at energies as low as 1 kcal/mol
(0.04 eV) indicate asymmetry in the differential cross sections.
In other studies14 the integral cross section was found to decrease
with increasing energy for collision energies below 2 kcal/mol,
as expected for an insertion reaction with no barrier, and to
increase at higher energies, as expected for an abstraction
reaction. This influences the O(1D) + H2 rate coefficients,4 and
it is observed that the high temperature rate coefficient is
substantially higher than at room temperature. This activated
behavior is not expected for reaction on the ground state surface.

These experimental studies have stimulated theoretical studies
of O(1D) + H2 that include excited states. In one of these studies,
the excited states were included only as uncoupled adiabatic
states in quasi-classical trajectory (QCT) calculations.33 Other
studies29-31,34 used trajectory surface hopping (TSH) meth-
ods36,37 and involved two coupled states (1A′ and 2A′). The
TSH studies included coupling due to electrostatic interactions
that are important at short range (because of the conical
intersection), but electronic Coriolis effects and long range
electrostatic coupling were neglected. The conclusion of these
studies is that the lowest state can account for most of the cross
section at low collision energiese 2 kcal/mol. The 2A′ and

1A′′ states become important at high energy once the barrier to
reaction on these states is surmounted. This produces the
increase in the cross section with energy observed above 2 kcal/
mol.

Important discrepancies between theory and experiment
remain that are unresolved at this point. In particular, several
groups have noted38-40 that the agreement between the observed
angular and translational energy distributions and those from
TSH or adiabatic QCT calculations is worse when the excited
states are included than when they are omitted. Also, Lee and
Liu41 have recently demonstrated that the 1A′′ contribution to
the cross section is larger for H2 initial rotation statej ) 1
compared toj ) 0, the opposite of what was suggested by
classical trajectory calculations.33 In addition, the validity of
the TSH method has been questioned in recent studies of other
gas phase reactions,42,43so these criticisms might also be valid
for O(1D) + H2.

In this paper, we present a new study of nonadiabatic effects
in O(1D) + H2, based on three dimensional (total angular
momentum J) 0) wave packet calculations. These calculations
are based on similar technology to what was used in recent wave
packet calculations for the ground state surface,27,28 but in the
present calculations we include for the coupled dynamics
involving 1A′ and 2A′. We also present adiabatic results for
the 1A′′ surface, so that the relative reactivity of 2A′ and 1A′′
can be determined. Electronic Coriolis coupling effects will not
be included; however, a recent quantum study has shown35 that
they play a relatively minor role in the overall reactivity for
this system.

Our calculations consider two sets of coupled potential
surfaces, one being the semiempirical diatomics-in-molecules
(DIM) surfaces that were developed by Kuntz, Niefer, and
Sloan30,31 and the other being the recently developed ab initio
surfaces from Dobbyn and Knowles (DK).44,45 Included in our
analysis are comparisons with the results of other methods for
describing the reaction dynamics, including the TSH method
noted above, and the recent vibrationally adiabatic quantum
scattering method of Drukker and Schatz.35 We also make
estimates of the effect of nonadiabacity on the thermal rate
constant.

All of our quantum and our best TSH calculations are based
on a diabatic representation where the electronic Hamiltonian
is written as a 2× 2 matrix that containsΣ-like andΠ(A′)-like
potentials along the diagonal, and an interaction potentialHΣ,Π
that vanishes for linear geometries. We use the terms “Σ diabat”
and “Π-diabat” to refer to these states (even for nonlinear
geometries), and “1A′” and “2A′” to refer to the adiabats that
are obtained by diagonalizing the 2× 2 matrix. In Drukker
and Schatz,35 another diabatic representation was introduced in
which the A′ and A′′ components of theΠ state are rewritten
in terms of complex exponentials so that they are also
eigenfunctions of the electronic orbital angular momentum
projection operator along the molecular axis. This alternative
diabatic representation, in which the electronic Hamiltonian is
3 × 3 (or 5 × 5 if ∆ states are included), is convenient for
describing the Coriolis interactions. However if this interaction
is left out, as in the present calculations, then the A′ and A′′
states are not coupled, and it is easier to use the 2× 2 diabatic
representation in terms ofΣ andΠ(A′) states.

This paper is organized as follows. In section II we describe
the diabatic model, potential surfaces, and briefly outline
essential aspects of the wave packet and other dynamical
methods employed by us. Section III presents the application
to O(1D) + H2. Section IV summarizes our conclusions.

Figure 1. Schematic diagram of the two relevant electronic states for
O(1D) + H2. As the reactants approach each other the initially
degenerate surfaces split in energy. OH(X)+H corresponds to products.
Top part: Surfaces for bent OHH geometries. Bottom part: Surfaces
for collinear OHH geometries.

Nonadiabatic Effects in O(1D) + H2 f OH + H J. Phys. Chem. A, Vol. 103, No. 47, 19999449



II. Model and Methods

A. Diabatic Hamiltonian Model. Here we present the two-
state electronic Hamiltonian used in the present calculations. A
more rigorous five-state description of the O(1D) + H2 reaction
dynamics is presented by Drukker and Schatz.35 Reactant Jacobi
coordinatesR, r, and cosγ are employed, withR being the O
to center of H2 distance,r being the H2 distance, and cosγ the
cosine of the angle between the vectors associated withR and
r.

In the two-state approximation, electronic orbital angular
momentum is neglected, so that the Hamiltonian operatorH is
given by an expression that is very similar to the single surface
result. This Hamiltonian is

whereµ ) 2mHmO/(2mH + mO), m ) mH/2, P andp are radial
momentum operators associated withR andr, respectively,l2/
2µR2 is the centrifugal term,j2/2mr2 is the rotational energy
term, which involves derivatives associated with cosγ, andHel

is the electronic Hamiltonian. Since electronic angular momen-
tum is not included, the total angular momentumJ is given by
J ) j + l, and the centrifugal terml2/2µR2 gives rise to (nuclear)
Coriolis coupling effects when the wave function is expressed
in body-fixed coordinates. In this work, onlyJ ) 0 will be
considered in the wave packet calculations (l2 ) j2), and
l-shifting28 or J-shifting46 approximations are used in performing
the partial wave sums to determine cross sections and rate
constants.

The wave function (or wave packet) is expanded in terms of
diabatic electronic states, which we call|Σ〉 and|Π〉. (For brevity
we use|Π〉 to denote the state associated with the A′ component,
Π(A′), of the Π state.) These states depend not only on the
electronic degrees of freedom, but on the nuclear degrees of
freedomR, r, and cosγ. However, it is assumed that these
diabatic states have been suitably determined so that nuclear
derivative terms associated with them, arising from the kinetic
energy operators in eq 2, can be neglected. This, of course, is
a key simplifying feature of a good diabatic representation since
coupling matrix elements related to derivatives of the electronic
states with respect to nuclear coordinates, which can be difficult
to calculate (and sometimes divergent), do not occur. The
Schrödinger equation then takes the form of a 2× 2 matrix
equation, with the nuclear kinetic energy terms in the Hamil-
tonian appearing along the diagonal, and the electronic Hamil-
tonianHel appearing as a 2× 2 matrix,

whereHΣ,Σ is theΣ diabat,HΠ,Π is theΠ(A′) diabat, andHΣ,Π
) HΠ,Σ is the diabatic coupling potential. Note that the diabatic
electronic matrix elements in the present treatment are real-
valued functions, and are formally consistent with the use of
real-valued electronic functions (e.g. cosines). This differs from
the use of a complex exponential basis by Schatz and Drukker,35

but is of course also a valid and equivalent representation. (See
also the Introduction.)

Of course, all the matrix elements in eq 3 depend on the
nuclear degrees of freedom,R, r, and cos γ. If Hel is
diagonalized, then the eigenvalues are the adiabatic potentials
(1A′ and 2A′), and the derivatives of the eigenvectors with

respect to the nuclear variables define the usual nonadiabatic
coupling matrix elements that couple the adiabatic states.

B. Potential Energy Surfaces.The Dobbyn-Knowles (DK)
potential surface44,45 is based on high quality internally con-
tracted multireference configuration interaction calculations.
Although adiabatic states are produced in these calculations, a
diabatization transformation was performed, so that the matrix
elementsHΣ,Σ HΠ,Π, and HΣ,Π were directly provided. This
diabatization is based on calculating matrix elements associated
with the component of the electronic orbital angular momentum
operator and, in effect, constructing linear superpositions of the
adiabatic states (i.e. diabatic states) that have significantΣ or
Π character with respect to certain axes. The original theory of
this approach was described by Rebentrost and Lester,47 and a
recent description that is more relevant to the present applica-
tions is given in Dobbyn et al.48 Figure 2 illustrates the relevant
diabatic energies and coupling for the DK surface. TheHR,R′
displayed in Figure 2 have been averaged overr and cosγ,
with weighting determined by the absolute square of an
asymptotic H2 ground vibration-rotation state. The top part,
Figure 2a, gives a broad picture over a wide range ofR values,
whereas the lower part, Figure 2b, focuses on the diabats and
coupling at longer range.

The DIM potential of Kuntz, Niefer, and Sloan30,31has been
developed in a slightly different way than the DK surface. This
potential is available in the adiabatic representation, and it is
not straightforward to transform it to a diabatic representation
using the procedure just described. Another procedure is
possible, however, because in addition to the 1A′ and 2A′
surfaces we also have the 1A′′ surface from the same DIM
calculations.34 This surface is similar to theΠ diabat,HΠ,Π, so
if we simply assume these are the same, it is possible to derive
expressions forHΣ,Σ and HΣ,Π by inverting the following
formulas, obtained from diagonalizing eq 3:

H ) P2

2µ
+ l2

2µR2
+ p2

2m
+ j2

2mr2
+ Hel (2)

Hel ) (HΣ,Σ HΣ,Π
HΠ,Σ HΠ,Π

) (3)

Figure 2. The DK diagonal diabatic energies,HΣ,Σ (solid curve with
filled circles),HΠ,Π (solid curve with open circles), and couplingHΣ,Π

(dashed curve), averaged over an asymptotic H2 ground vibration-
rotation state. (a) presents a broad view of these matrix elements and
(b) is a blowup of the longer range portion.

E(1A′) ) 1
2
[(HΣ,Σ + HΠ,Π) - ((HΣ,Σ - HΠ,Π)2 - 4HΣ,Π

2 )1/2]

E(2A′) ) 1
2
[(HΣ,Σ + HΠ,Π) + ((HΣ,Σ - HΠ,Π)2 - 4HΣ,Π

2 )1/2]
(4)
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We used the DIM diabats defined this way in all of our
calculations.

The DK and DIM potential surfaces are qualitatively similar,
but there are some important quantitative differences. Perhaps
the most noticeable difference is in the (collinear) barrier height
for reaction on the 1A′′ surface. This barrier is 2.3 kcal/mol on
the DK surface and is located atrOH ) 3.09a0, rHH ) 1.46a0,
with vibrational frequencies 3646, 271, and 661i cm-1. On the
DIM surface, the barrier is 3.7 kcal/mol, and is located atrOH

) 3.17a0, rHH ) 1.43a0, with frequencies of 4122, 174, 566i
cm-1. Another difference is in the long range part of the 1A′
potential, which is more attractive on the DIM than on DK
surface. These differences make the 1A′ cross sections larger
for the DIM surface, but the 1A′′ and 2A′ cross sections
(usually) larger on the DK surface.

C. Wave Packet Dynamics.The quantum dynamics calcula-
tions were carried out in a fashion similar to previous calcula-
tions for the 1A′ adiabatic dynamics.27,28 The main difference,
of course, is that the wave packet now also includes components
associated with the two diabatic electronic statesR ) Σ andΠ.
The addition of the electronic degrees of freedom poses no
difficulties with the J ) 0 Hamiltonian being essentially the
same as in refs 27 and 28 except that the adiabatic potential
V(R, r, cosγ) is replaced by the 2× 2 diabatic matrix, eq 3.
We therefore only describe a few pertinent details.

The propagation scheme employed (see below) focuses on
just the real part of the wave packet, which in terms of reactant
Jacobi coordinates may be written

wherePh j are normalized Legendre polynomials, and|R〉 formally
represent the electronic statesR ) Σ andΠ. The superscriptk
is used to denote iteration number or discrete time step. Evenly
spaced grids are employed forR andr: with x ) R or r, xi )
xmin + n∆x, n ) 1,2,...,Nx, ∆x ) (xmax - xmin)/(Nx + 1). The
introduction of finite sized grids, as well as a finite rotational
basis inj, effectively impliesqk is approximated by a large vector
qk and the Hamiltonian operator becomes a matrixH.

The real wave packet propagation scheme49 was employed,
which features propagating the real vectorqk according to
Mandelshtam and Taylor’s damped Chebyshev iterations.50,51

Introducing a linearly scaled Hamiltonian matrixHs ) asH +
bs, such that the eigenvalues ofHs lie within (-1,1), the damped
Chebyshev iteration is

hereA is some appropriate matrix which damps the wave packet
amplitude as it approaches theR andr grid edges. We takeA
to be a diagonal matrix with elementsaR(Ri)ar(rj), whereax(xi)
) exp[-cx(xi - xa)2] for xi g xa. In the real wave packet
approach, the Chebyshev iterations above are identified with
the real part of theexactSchrödinger time evolution, in discrete
time stepskτ, under an effective Hamiltonian matrixf(H) )
-(p/τ) cos-1 Hs, allowing standard time-dependent methods of
analysis to be used in determining reaction probabilities.49,52

The effective Hamiltonian matrix differs fromH in a nonlinear
fashion, so the “time”kτ is not physically meaningful. Indeed,
τ is arbitrary and cancels in any formulas for observables. (This
approach is also closely related to the “time-independent” wave
packet approaches of Kouri and co-workers53,54 and can be
viewed as a generalization to reactive scattering of approaches
developed by Chen and Guo.55) However, the magnitude ofqk

is in fact a good approximation to the magnitude of the real
part of an ordinary wave packet (evolving underH and starting
from the same initial condition) at a physically meaninful time
tphys given by tphys ≈ kasp/(1 - Es

2)1/2, whereEs is the mean
scaled energy of the wave packet.27 This approximation, based
on the linearization off(H) aboutEs is usually quite accurate
owing to the fact that, with typical initial conditions, the wave
packet’s energy is concentrated in a narrow range in comparison
with the full energy range.

The initial conditions for our propagations are given by the
discrete analogs ofq0 ) Reψ,

which describes an incoming Gaussian wave packet inR with
mean momentum-pk0, centered atR ) R0, and associated full
width at half maximum of 2ω ln 2. H2 is initially in its ground
vibration (ø0) and rotation (Ph0) state, and the reactants are
initially approaching on electronic state|R〉. The recursion eq
6 requiresq0 andq1 to be initiated.q1, if the initial condition
is complex as it is in the present case, is evaluated according to
q1 ) Hs‚q0 - (1 - Hs

2)1/2‚p0, wherep0 is the imaginary part of
the initial condition.49 The action of the square root operator is
itself accomplished with a Chebyshev expansion.27

Each iteration step eq 6 requires an evaluation ofH on a real
vector. Fast sine Fourier transforms are used to evaluate the
relevant kinetic energy terms associated withRandr. The wave
packet is kept in the Legendre basis above, which is convenient
for evaluation of the relevant centrifugal term associated with
j2 in eq 2. However, the potential terms are evaluated by
transformation to a Gauss-Legendre quadrature grid associated
with cosγ, multiplication by the relevant potential terms on a
full grid, and back transformation to the Legendre basis. This
approach eliminates storage of large potential matrices. The
calculations converge most favorably if the spectral range of
the Hamiltonian is kept as small as possible without significantly
altering accuracy. This is accomplished by introducing a cut-
off energy Vcut, which is applied to all components of the
diabatic electronic Hamiltonian as well as the centrifugal energy
term.27

We estimate total reaction probabilities with a flux approach,52

based on calculating the reactive flux on some surface separating
reactants from products. In our case we define such a surface
by r ) rq. (We should note that in the particular cases of the
DIM propagation associated withR ) Σ, as well as adiabatic
1A′ DIM propagation, there are much stronger long-range
interactions relative to the DK surface, which lead to the
underlyingΣ or 1A′ potentials still showing some variation even
at R0 ) 9.5 a0. The determination of the total reaction
probabilities also requires knowledge of the asymptotic distribu-
tion of momenta or energies in the initial wave packet. Because
of the potential variation, the analytical form consistent with
an incoming Gaussian has some error in it, particularly at low
and high energy. We compensate for this by carrying out a back
propagation on an effective one-dimensional potential to
determine a more correct asymptotic distribution, as discussed
in ref 28.

Typical grid and basis set details are given in Table 1. We
carry out propagations to typically 20000-30000 iterations of
eq 6. A typical coupled electronic state calculation, with the
parameters in Table 1, requires≈2.3 days of computational time
on an IBM RS/6000 workstation and requires≈80 MB of

qk(R, r, cosγ) ) ∑
R
∑

j

Cj,R
k (R, r)Ph j(cosγ)|R〉 (5)

qk+1 ) A ‚ (-A ‚ qk-1 + 2Hs ‚ qk) (6)

ψ(R, r, cosγ) ) x 1

xπω
exp(-(R - R0)

2

2ω2 ) ×
exp(-ik0(R - R0)) ø0(r)Ph0(cosγ)|R〉 (7)

Nonadiabatic Effects in O(1D) + H2 f OH + H J. Phys. Chem. A, Vol. 103, No. 47, 19999451



memory. The single surface calculations with the same param-
eters require just under a day of computational time.

D. Trajectory Surface Hopping and Vibrationally Adia-
batic Coupled Channel Calculations.For comparison with the
wave packet results, two more approximate dynamical calcula-
tions are carried out for the case corresponding to reactants being
initially on theΠ state, which has the most interesting electronic
coupling effects.

The trajectory surface hopping (TSH) calculations were
carried out using Tully’s fewest switches approach36 as described
by Schatz et al.34 This TSH method involves simultaneous
integration of the nuclear coordinates according to the classical
equations of motion and of the amplitudes for being on the two
electronic states according to a time-dependent Schro¨dinger
equation. The only departure from ref 34 is that with one
exception we used a diabatic representation for the TSH
calculations rather than an adiabatic representation. This means
that the trajectories and coupled Schro¨dinger equation were
integrated using the diabats, and theHΣ,Π coupling. Also, the
direction perpendicular to the intersection surface (used in
adjusting the momenta after a surface hop) was chosen to be
the gradient of the difference potential (HΣ,Σ - HΠ,Π) rather
than the derivative coupling vector. The one exception that we
considered was for the DIM surface, where we were also able
to use the adiabatic representation of ref 34 with the derivative
coupling vectors from the DIM function. We used this calcula-
tion to determine the dependence of the results on which
representation was used. We found that while both representa-
tions give roughly similar results, the diabatic representation
results were much more accurate. For example, at 0.2 eV
collision energy, the TSH adiabatic representation probability
is 0.08, while the corresponding TSH diabatic representation
probability is 0.20, and the (DIM, initialΠ state) quantum wave
packet result is 0.22. Note that because of the conversion
between adiabatic and diabatic representations was done ap-
proximately, as discussed in section IIB, even the quantum
results for the two representations should be different. Although
we have not done wave packet calculations in the adiabatic
representation (this would be quite difficult), we have assessed
the internal consistency of the two representations by determin-
ing the derivative couplings that are based on the diabatic
representation defined above for the DIM surface, and the results
agree reasonably for geometries close to the conical intersection
with those in the original adiabatic representation that was used
to define the DIM diabats in the first place. As a result, we
expect the quantum results will be fairly close for the two
representations. In contrast to this, the TSH method, being
approximate, should give different results in different repre-
sentations, even if they are rigorously equivalent in their
quantum dynamics. In the present application it turns out that

theΠ state dynamics is closer to being diabatic than adiabatic
(this is discussed in detail later), so TSH in the diabatic
representation is less sensitive to the accuracy of the hopping
algorithm than in the adiabatic representation. In fact, the TSH
probability in the adiabatic representation is zero in the absence
of hopping, so all of the reaction probability of 0.08 comes from
the hopping algorithm, whereas in the diabatic representation
the probability at 0.2 eV is already 0.11 in the absence of
hopping, which means that hopping changes the probability from
0.11 to 0.22. Thus we see that hopping is of lesser importance
in the diabatic representation than in the adiabatic representation.
Since the diabatic representation results are more accurate, we
restrict the TSH results presented later to those based on the
diabatic representation.

In the TSH calculations, we consideredJ ) 0 and integrated
100 trajectories per energy. The uncertainties associated with
the TSH probabilities are estimated to be within(5%. These
calculations are quite time consuming for either the DK or DIM
surfaces, requiring about a day of workstation time per energy.
This is due to the DK and DIM surfaces being complicated
functions that must be evaluated 104-105 times per trajectory,
the small time steps needed to integrate the time-dependent
Schrödinger equation accurately, and the fact that the trajectories
can involve collision complexes. (Note the time-dependent
Schrödinger equation referred to here isnot the more rigorous
one used in our wave packet calculations, but the one arising
from the TSH model.) It would seem that the accurate quantum
wave packet approach (which also generates information about
all relevant energies at once) is more efficient! However, the
effort needed to generate cross sections or rate constants with
TSH is not much larger than the effort associated with theJ )
0 TSH calculations, and the method scales much more favorably
with dimensionality.

Approximate time-independent quantum results for the O+H2

reaction were also obtained with a vibrationally adiabatic
coupled channel method presented in more detail elsewhere.35

In these studies the coupled channel equations were actually
solved including all five electronic surfaces. The electronic states
of the atom and the rotational states of the diatomic are included
without any approximation to the vector coupling, or to the
kinetic energy terms in the Hamiltonian. However, in order to
keep the problem numerically tractable the diatomic vibration
r is treated in an adiabatic fashion, and a limited rotational basis
(most appropriate for relatively low collision energies) were
employed. Also, the reactive flux is absorbed by using imaginary
potentials in the interaction region before products have
completely separated. The method was developed for the study
of the effect of electronic Coriolis coupling on the reactive cross
sections, but here results are presented for the Coriolis decoupled
case for comparison with the wave packet calculations. Also,
in these calculations we used the electronic Hamiltonian in eq
3 for the electrostatic coupling, rather than that in ref 35 that is
based on a complex exponential basis. This leads to reaction
probabilities that are consistent with the real-valued electronic
functions employed in this paper. These scattering calculations
involved using a basis of typicallyj ) 0, 2, and 4 rotational
states, along with all the appropriate projection states that are
consistent with these values ofj, for the five electronic states
and a given value ofJ. For lowJ, this involves a small number
of states (<20), so the computational time per energy is on the
order of tens of seconds on a workstation. In contrast to the
wave packet and TSH calculations, these calculations are trivial
in terms of computational effort. The approximations invoked,
however, limit their reliability to low collision energies.

TABLE 1. Typical Grid/Basis Set and Initial Condition
Details.

reactant scattering coordinate (R) range/a0 0-14.5
number of grid points inR 209
diatomic coordinate (r) range/a0 0.5-11.5
number of grid points inr 127
number of angular grid points 40 (using potential symmetry)
number of angular basis functions 40 (j ) 0, 2, ..., 78)
potential and centrifugal cut-offVcut/eV 12
absorption inRstarts atRa/a0 10.5
absorption strength inR, cR/a0

-2 0.005
absorption inr starts atra/a0 7.5
absorption strength inr cr/a0

-2 0.005
center of initial wave packetR0/a0 9.5
Gaussian width factorω/a0 0.4
initial translational kinetic energy/eV 0.15
flux analysis line r†/a0 6.0
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III. Results and Discussion

A. Adiabatic and Diabatic Single Surface Reaction Dy-
namics. The ground 1A′ adiabatic electronic state directly
connects the reactants and products in reaction 1, and also
correlates with the ground electronic state of H2O. Adiabatic
dynamics on this surface, is expected to be the most important
contributor to the low energy reactive cross sections and
moderate temperature rate constants. Figure 3 displays our
quantum results for the total reaction probability associated with
reaction 1, with the restrictions that the system have total angular
momentumJ ) 0 and that H2 initially be in its ground vibration-
rotation state,V ) j ) 0. The total reaction probability reflects
a sum over all energetically allowed OH(X2Π) vibration-
rotation states,V′ and j′. (We do not investigate any details
concerning the product distributions.) Both the 1A′ DIM surface
result (Figure 3a) and the 1A′ DK surface result (Figure 3b)
show that the total reaction probability is, on average, quite high.
Both surfaces exhibit significant reaction probability at very low
collision energies, consistent with the 1A′ surface having no
barrier to reaction. While the DIM and DK reaction probabilities
are roughly similar, the DIM surface is, on average, more
reactive, than the DK surface. This reflects the fact that the DIM
surface has stronger long range attraction than the ab initio DK
surface. There is a lot of fine structure in Figure 3a and b,
presumably because of the presence of numerous short-lived
H2O complexes and also due to the opening of various product
V′, j′ channels. Similar behavior was seen in the adiabatic
quantum dynamics of two other 1A′ potential energy sur-
faces.26,27 Note also that the adiabatic 1A′ DK surface result
was also previously obtained28 in relation to a capture model
study of total angular momentum effects. The convergence
details of the resonance features in Figure 3 are similar to those
of this earlier study.28 In particular, the highest frequency
features in Figure 3 at low collision energies do show some
sensitivity to grid and propagation time details. However, if one
averages over a small collision energy window of, say, 0.04
eV, we estimate that our reaction probabilities are converged
to (0.02 or 2%.

QCT studies28,56 have also been performed for the 1A′
adiabatic dynamics. Using the surface of Ho et al.,21 which is
similar to the present DK surface, Aoiz56 presentedJ ) 0

reaction probabilities that were similar to but smoother than
the corresponding quantum ones. These classical results were
also generally upper bounds to the quantum ones. AJ ) 0 QCT
study at one energy on the 1A′ DK surface also confirms this
latter result.28

As indicated by Figure 1, adiabatic dynamics on the 2A′
surface cannot produce the desired OH(X2Π) products, since it
correlates with electronically excited OH(A2Σ). Thus the reaction
probability associated with reaction (1) is zero for this adiabatic
surface. Similarly, in the diabatic represention discussed in
sections I and II, theΣ diabat also correlates with OH(A) and
therefore has no reactivity. TheΠ diabat, however, correlates
with OH(X). Figure 4 shows the total reactivity associated with
dynamics on the DIM (dashed curve) and DK (solid curve)Π
diabats. These reaction probabilities are consistent with reaction
being a direct and activated process on theΠ diabat. The
(collinear) barrier to reaction on the DIMΠ diabat is≈0.06
eV higher than the corresponding DKΠ diabat (0.16 vs 0.10
eV), and this accounts for the DIM threshold for reaction being
displaced to the right of the DK threshold in Figure 4. The DK
Π diabat result in Figure 4 has more obvious step like structures
than the DIM result. These structures are related to adiabatic
thresholds associated with even excitations of the bending
frequency (0.034 eV) at the collinear transition state. The
associated DIM bending frequency (0.022 eV) is smaller, which
brings the steps closer to one another so that they tend to a
smoother structure.

As our final example of single surface dynamics, we consider
the 1A′′ surface, which also correlates with OH(X) products
and has features similar to theΠ diabat discussed above since
for collinear geometries it is degenerate with this diabat. While
the 1A′′ andΠ diabat surfaces coincide at collinear geometries,
some differences occur at bent geometries. For example, the
DK 1A′′ surface exhibits a smaller bending frequency associated
with motion away from the collinear saddle point. Figure 5
displays the DK 1A′′ reaction probability (solid curve) and
contrasts it with the DKΠ diabat result (dashed curve),
confirming that the 1A′′ dynamics is similar to theΠ diabat
dynamics. However, as anticipated in the Introduction, the 1A′′
reaction probability is slightly higher than the corresponding
uncoupledΠ diabat result. Recall that in order to construct the
DIM diabatic model (section II) we actually assumed thatΠ
diabat was the same as the 1A′′ adiabat. The reasonably close

Figure 3. The total reaction probability for O(1D) + H2(X; V ) j )
0) f OH(X) + H with total angular momentumJ ) 0 and assuming
adiabatic dynamics on the ground 1A′ electronic state. (a) corresponds
to the DIM 1A′ surface wave packet results, and (b) corresponds to
the DK 1A′ surface wave packet results.

Figure 4. The total reaction probability for O(1D) + H2(X; V ) j )
0) f OH(X) + H with J ) 0, and assuming single surface dynamics
on theΠ diabatic state. The dashed curve corresponds to the DIMΠ
diabat wave packet results, and the solid curve corresponds to the DK
Π diabat wave packet results.
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correspondence of the curves in Figure 5 provides justification
for this assumption.

B. Nonadiabatically Coupled Surfaces Reaction Dynamics.
In the asymptotic reactants limit, theΣ andΠ diabats (sections
I and II) are degenerate and one can determine all the relevant
observable dynamics by considering initial conditions corre-
sponding to any two linearly independent superpositions ofΣ
and Π. In particular, we consider an initial condition corre-
sponding to reactants approaching initially on the pureΣ diabat,
and another initial condition corresponding to reactants ap-
proaching on the pureΠ diabat. What linear combinations of
adiabatic (1A′ and 2A′) states do these two particular pure
diabatic initial conditions correspond to? One might naively
anticipate simple symmetric and antisymmetric combinations
of the 1A′ and 2A′ states but that is not the case. Consider the
two-state mixing angleø, given by tan(2ø) ) 2 HΣ,Π/(HΣ,Σ -
HΠ,Π). In a simple two-state picture one can relate the 1A′ and
2A′ states to the corresponding diabatic states according to57

As a function ofR and cosγ with r ) 1.4a0 one finds that for
the R values of relevance to our initial conditions(R g 9 a0),
ø is relatively small for both the DK and DIM surfaces (|ø| e
0.1 radians) which implies that the pureΣ diabat is, in fact,
very close to a 1A′ adiabatic state and, similarly, that the pure
Π diabat is very close to a pure 2A′ adiabatic state. This is
convenient, since then the reaction probability for reaction 1 if
we start in the 1A′ (2A′) state is then essentially the same as
the corresponding reaction probability if we start on theΣ (Π)
state.

We first consider the case of O(1D) + H2(X; V ) j ) 0)
reactants initially approaching one another on theΣ diabat. In
the absence of electronic coupling, as noted previously, this
situation would lead to no products, i.e., zero reaction prob-
ability. Figure 6 displays as solid curves our calculated reaction
probabilities. The nonadiabatic results on both the DIM (Figure
6a) and DK (Figure 6b) coupled surface systems indicate, in
fact, a very high degree of reactivity occurs. These results, while
not identical to the adiabatic 1A′ results (indicated as dashed
curves in Figure 6) are actually very similar to them, and exhibit
many maxima and minima at approximately the same energies.

Electronic coupling in relation to the diabatic representation is
very strong in this case, taking the pureΣ state into, effectively,
a coherent superposition ofΣ andΠ states that corresponds to
a good approximation of the 1A′ adiabatic state. However,
keeping the discussion of the above paragraph in mind,
asymptotically theΣ and 1A′ states are almost equivalent and
so if we were to run our calculations in an adiabatic representa-
tion, starting from 1A′, there would be very little coupling
between the adiabatic states.

We next consider O(1D) + H2(X; V ) j ) 0) initially
approaching one another on theΠ diabat. Recall that without
electronic coupling the reaction probability was consistent with
a direct, activated process and, at energies above the classical
barrier was quite high (Figure 4). Figure 7 displays the resulting
total reaction probabilities for the DIM (dashed curve) and DK
(solid curve) surfaces, now allowing for coupling to theΣ
surface to occur. There are at least two interesting features to
note. First, the reaction probabilities at collision energies above

Figure 5. The solid curve corresponds to the total reaction probability
for O(1D) + H2(X; V ) j ) 0) f OH(X) + H with J ) 0, assuming
adiabatic dynamics on the DK 1A′′ surface. The dashed curve is the
correspondingΠ diabat DK result for comparison.

|1A′〉 ) cosø|Σ〉 + sin ø|Π〉

|2A′〉 ) -sin ø|Σ〉 + cosø|Π〉 (8)

Figure 6. The solid curves correspond to the total reaction probability
for O(1D) + H2(X; V ) j ) 0) with J ) 0, allowing for coupling of the
Σ and Π diabats (or equivalently the 1A′ and 2A′ adiabatic states),
with the initial reactant state being purely theΣ diabat, and the dashed
curves correspond to the adiabatic results: (a) DIM surfaces, (b) DK
surfaces.

Figure 7. The total reaction probability for O(1D) + H2(X; V ) j )
0) with J ) 0, allowing for coupling of theΣ andΠ diabats, with the
initial reactant state being purely theΠ diabat: (a) DIM results, (b)
DK results.
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the collinear barrier can be significant, ranging between 0.4 and
0.8, which reflects a tendancy towards an uncoupled diabatic
mechanism, similar in spirit to that seen in our pureΠ diabat
calculations of Figure 4. This represents the opposite of the near
adiabatic limit noted above in relation to propagation of theΣ
initial condition and can be interpreted as strong nonadiabatic
coupling due to the conical intersection. However, the general
magnitudes of the probabilities in Figure 7 can be 20% lower
than the uncoupled results of Figure 4 at these higher collision
energies and they also exhibit more structure, indicating that
somewhat more complex dynamics is occuring. Note in
particular that the steps in Figure 7 are more widely separated
and more noticeable than in Figure 4. This suggests that the
bottlenecks to reaction have moved from the saddle point region
to shorter distances, such as near the conical intersection, where
the bending frequency is higher.

The second interesting feature of the results in Figure 7 is at
collision energies below the classical barrier to reaction. While
these probabilities are small, on the order of magnitude of 0.1,
they are non-zero even at very low energies close to the zero
collision energy limit. Both the ab initio DK and the semiem-
pirical DIM surfaces exhibit this behavior, although, interest-
ingly, the ab initio surface shows a more significant low energy
shoulder. These results are inconsistent with the barrier tunneling
mechanism that is operative in the uncoupledΠ diabat results
(Figure 4), which leads to much smaller reaction probabilities.
We experimented with the coupling termHΣ,Π and found that
if it is exponentially damped forR > 4.5 a0 then the low
collision energy probabilities become much smaller and behave
just as in Figure 4, while the higher energy probabilities are
not significantly affected and remain similar to those in Figure
7. Thus we have an interesting mechanism wherein the necessity
of tunneling through theΠ barrier at close range is avoided by
Π to Σ transitions at longer range. Once amplitude grows on
theΣ state at these larger distances it behaves more like theΣ,
propagation results discussed in the above paragraph, i.e., it
behaves more like the 1A′ adiabatic results, which exhibit
nonzero reaction probabilities even at very low collision
energies. (Notice also some fine resonance features that are
apparent in Figure 7 at the low collision energies. These are
similar to the resonance features in 1A′ and Σ propagations
presented in Figure 6.)

Figure 8 further solidifies the points noted above in relation
to the DK surface. The solid curve corresponds to the initialΠ
state propagation result of Figure 7 that includes electronic
coupling. The dashed curve is the corresponding adiabatic 1A′′
DK surface propagation result, which in turn is similar to the
uncoupledΠ diabat result (see Figure 5). Filled circles cor-
respond to our TSH results consistent with theΠ state
propagation (which should be compared to the solid curve
quantum result), and the open circles correspond to ordinary
quasiclassical trajectory results on the 1A′′ surface (which should
be compared to the dashed curve quantum result). The dotted
line with open diamonds corresponds to the vibrationally
adiabatic scattering method of Drukker and Schatz,35 which also
should be compared with the solid curve quantum result. The
TSH and 1A′′ trajectory results are in reasonably good qualita-
tive agreement with the corresponding quantum results. In
particular, note that the TSH calculations (filled circles) do
predict a finite reaction probability for the coupled diabats at
very low energies, and this contrasts with the trajectory results
for the 1A′′ surface (open circles) at these energies. An
examination of the TSH trajectories indicates that the hops that
are responsible for this take place at relatively long range (R>

4 a0). At higher energy, the 1A′′ reaction probability rises up
above theΠ probability. Since theΠ diabat is very similar to
the 1A′′ adiabat, some of the difference between reaction
probabilities at high energy is due to trajectories which start
out on the Π diabat, then transfer to theΣ diabat after
surmounting the barrier, and then get reflected from the repulsive
Σ potential for linear geometry. Finally we note that the
vibrationally adiabatic quantum scattering approach35 yields
behavior qualitatively similar to theΠ state propagation (solid
curve), including the presence of a noticeable shoulder at low
collision energies. The reaction probabilities for this approach
show much less structure than theΠ wave packet propagation
results, and in the middle collision energy region, are somewhat
lower than theΠ results. The adiabatic treatment ofr and the
use of optical potentials that absorb amplitude in the well region
are partly responsible for these deviations. Also, the rotational
basis used in these calculations, while adequate for the low
collision energy region, was really too small to describe bending
threshold effects accurately. While for brevity we do not display
the results, a very similar figure to Figure 8 was determined
with the DIM surfaces.

We close this section on the coupled diabatic state dynamics
by examining the O,H2 angle γ averaged nuclear density
contributions,

as the wave packets evolve, whereR labels the diabatic
electronic state andCj,R

k (R, r) are the coefficients of the real
wave packet of section II at iteration numberk. Inspection of
FR

k(R, r) yields qualitative insights into the mechanism. Figure
9 displaysFR

k consistent with physical timestphys ) 0, 75, 150
and 225 fs for the DIM surfaces case with the initial wave packet
on theΣ diabat. (Similar results were obtained with the DK
surface.) This corresponds to actual iteration numbersk ) 0,
≈ 2600, ≈ 5200 and≈ 7800. Note that we carry out our
calculations to much longer times or iteration numbers, e.g.,
iteration numbers on the order of 20,000 (tphy ≈ 580 fs), in

Figure 8. Various total reaction probability results for the DK surfaces
are compared. The solid curve represents the nonadiabatically coupled
quantum results with the reactant state being a pureΠ state. The dashed
curve corresponds toΠ state dynamics with no nonadiabatic coupling
allowed. The filled circles are trajectory surface hopping results. The
open circles are adiabatic quasiclassical trajectory results for the 1A′′
surface. The dotted line with open diamonds corresponds to the
vibrationally adiabatic scattering approximation. See text for further
details.

FR
k(R, r) ) ∑

j

|Ck
j,a(R, r)|2 (9)
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order to fine tune the reaction probability features. However
most of the key dynamics is completed by much shorter times
as is indicated by Figure 9. The left column of Figure 9
corresponds to theΣ state density and the right column of Figure
9 corresponds to theΠ density. One sees the wave packet,
initially localized onΣ approach the interaction region, spreading
out also onto theΠ state. Reaction can occur out of theΠ state
(right column) and that is most clearly indicated attphys ) 150
fs in the figure with density streaming up to larger (and
moderately largeR). Notice also that significant density withR
close to 0 au plays a role in the interaction region dynamics.
This is the quantum equivalent of the insertion mechanism,
which was also noted in an earlier 1A′ adiabatic surface quantum
study.27

Figure 10 is similar to Figure 9 except it is the density for
the case that we start on the DIMΠ diabat. The dynamics is
much simpler, with a direct mechanism on theΠ diabat alone
(right column) being evident. For example, at 75 fs one sees
density streaming to the larger region consistent with products
on theΠ state. (The subsequent times 150 fs and 225 s are
showing the nonreactive part of the wave packet going back
down the reactant channel.) However, one also sees some
nonadiabacity at 75 fs: theΣ state showing significant density
has grown in the interaction region. One also sees some of this
density tending to much smallerR values than theΠ state
density.

C. Rate Constant Estimates.In this subsection we make
some approximate estimates of the effect of the nonadiabatic
features noted above on the thermal rate constant for reaction
1 using the ab initio DK surface results. A completely rigorous
calculation of the rate constant requires much more information
than we have. For example, we would need to know the reaction
probabilities for a number of total angular momentaJ > 0, and
we would also need to know these reaction probabilities for
thermally populated initial vibration-rotation states of H2, V,j.

(More direct quantum approaches to obtainingk(T) are also
possible and can involve less work than calculating all the
individual state-to-state information.58) The rigorous calculation
of k(T) for reaction (1) is clearly a formidable task. We have at
our disposal here only J) 0 reaction probabilities out of H2 in
its ground vibration-rotation state,V ) j ) 0. We must make
two approximations. First, we assume that the reaction prob-
abilities (as a function of collision energy) are independent of
V, j and equal to theV ) j ) 0 ones. As a consequence of this
approximation, in what follows no thermal averages overV and
j occur and it is always assumed that reaction probabilities or
cross sections are those fromV ) j ) 0. Second, we estimate
the required J> 0 reaction probabilities from ourJ ) 0 ones
by employing either capture model ideas as previously invoked
in a study of the 1A′ surface,28 or J-shifting ideas.46

An earlier, more detailed study28 of the J-dependence of the
reaction probabilites on the 1A′ surface showed that J (orl) -
shifting based onJ ) 0 reaction probabilities can lead to errors
in the rate constant on the order of 15-20%. The assumption
that cross sections are independent of the initialV, j state of H2

and equal to theV ) j ) 0 ones is probably good for the 1A′
dynamics because, over the temperature range of interest (300-
1000 K),V ) 0 is the dominant contribution to the rate constant
and it has also been shown that there is relatively littlej
dependence in the reaction probabilities.21,26 The excited state
(2A′ or Π and 1A′′) dynamics is more sensitive to initialj,33

and it is difficult to quantitfy the associated uncertainties
introduced. However, the excited state contributions are in
general relatively small and we expect these uncertainties to
not be severe, i.e., less than the uncertainties introduced by
J-shifting.

The rate constant for reaction 1 can be written as

wherekR(T) represents the contribution from initial electronic
stateR ) Σ, Π, or 1A′′. In turn we can write eachkR(T) as an
appropriate Boltzmann average of the corresponding reactive

Figure 9. Contribution to the density from the real wave packet
associated with theΣ andΠ diabatic states for the case of the wave
packet initially being on theΣ state. These results correspond to the
DIM surface. The left column corresponds to theΣ state densities and
the right column corresponds to theΠ state densities. Approximate
times t in femoseconds are indicated in brackets.

Figure 10. Density contribution associated with theΣ (left column)
andΠ (right column) diabatic states for the case of the wave packet
initially being on theΠ surface. Other details as those in Figure 9.

k(T) ) kΣ(T) + kΠ(T) + k1A′′(T) (10)
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cross section form stateR, σR,

where we have included the electronic degeneracy factor of 1/5
appropriate to reaction 1 in the prefactor. (An alternative would
be to include the electronic degeneracy in the definition ofσR.
However, we are following the convention previously em-
ployed.28,33) The cross sections that enter into eq. 11 may be
written in two ways. One way is

wherekcol ) x2µEcol/p. J-shifting approximations46 can then
be employed to approximate reaction probabilityPR

J . Such
approximations are most appropriate to direct reactions with
barriers. In the case of a collinear transition state, the simplest
J-shifting approximation is that the reaction probability
PR

J(Ecol) ) PR
J)0(ε ) Ecol - J(J + 1)B), where B is the

rotational constant associated with the linear transition state (B
≈ 2 cm-1 for the 1A′′ state).

The second relevant form forσR is a sum over orbital angular
momenta associated with the O,H2 motion l,28

The l-shifting approximation,28 which is most appropriate when
reaction is occurs via a capture process without any significant
(bare) potential barrier, can then be invoked. This approximation
is a quantum generalization of the classical capture or optical
model that assumes the reaction probability is unity if a
centrifugal barrier height is exceeded and zero otherwise. A
simple l-shifting approximation isPR

l (Ecol) ≈ Pl)0
R(ε ) Ecol -

Vl*). Here, Vl* represents the centrifugal barrier height of an
appropriate effective potential alongR that includes the cen-
trifugal term l(l + 1)/2µR2. (See ref 28 for more details.) Note
that in the present case, withj ) 0 initial state for H2, l ) 0
corresponds toJ ) 0 and so, as with theJ-shifting approxima-
tion, only J ) 0 information is needed.

In our calculations we have estimated the relevant cross
sections and then rate constants for the DK surfaces using the
formulae above. We employed theJ ) 0 reaction probabilities
for the coupled electronic stateΣ andΠ initial states, as well
as theJ ) 0 adiabatic reaction probabilities for the 1A′′ state.
It is clear that theJ-shifting model outlined above is appropriate
to the caseR ) 1A′′ which, as discussed in the text, is an
adiabatic reaction with a collinear transition state and direct
dynamics. It is also reasonably clear that thel-shifting ap-
proximation is appropriate to estimate theΣ state cross sections,
since we showed in the previous subsection that theΣ dynamics
was very similar to the insertion and capture dominated 1A′
dynamics. The relevant centrifugal barriers were determined just
as in ref 28, employing the 1A′ adiabatic potential. (TheΣ
diabatic potential also leads to very similar results.) Which
model is most appropriate to theΠ propagation results is less
clear since the low collision energy region is dominated by the
long-range coupling mechanism (which would suggest anl
shifting approximation based on the 1A′ adiabatic potential,
would also be appropriate), and the higher collision energies

are dominated by a more direct diabatic mechanism that would
suggest that theJ-shifting approximation, based on the transition
state for theΠ diabat (which is the same as the 1A′′ transition
state) would be most appropriate. We discuss two results, a
relatively low temperature (T ) 300 K) for which thel shifting
model was used for theΠ rate constant estimate, and a high
temperature result (T ) 1000 K) for which theJ-shifting
approximation was used forσΠ.

At T ) 300 K we find, on the basis of the approximations
above, thatk(T) ) 1.0× 10-10 cm3 s-1. The experimental range
is 1.0-1.4× 10-10 cm3 s-1.21 The most significant contribution
to this rate constant comes fromkΣ, which contributes 86% to
the total. However, 13% ofk(T) is due tokΠ and the long range
mechanism discussed in the previous subsection, and 1% is due
to k1A′′. If J-shifting (instead ofl-shifting) were used to estimate
kΠ, k(T) would be lowered by 8% to 0.90× 10-10 cm3 s-1, and
the contribution to this fromkΠ would be 7%, which is still a
reasonable contribution. It is also of interest to contrast ourT
) 300 K estimate of the rate constant including nonadiabatic
effects, 1.0× 10-10 cm3 s-1, with the result based on purely
adiabatic dynamics on the 1A′ surface, which we calculate to
be 0.9× 10-10 cm3 s-1. The purely adiabatic result is thus 10%
lower than the nonadiabatic result. (The 1A′ adiabatic reaction
probability, at low energies, includes some aspects of both the
Σ andΠ reaction probabilities, and so the purely adiabatic 1A′
result is a little higher and closer to the nonadiabatic result than
might be expected.) At the higher temperature ofT ) 1000 K
we find k(T) ) 1.5× 10-10 cm3 s-1, with ≈ 13% contributions
from each ofkΠ andk1A′′. Effects due to nonadiabatic dynamics
are clearly largest here, with the purely adiabatic 1A′ estimate
being just 1.2× 10-10 cm3 s, i.e., 20% lower.

IV. Concluding Remarks

A variety of calculations were carried out in order to assess
the role of electronic nonadiabacity in the reaction of O(1D)
with H2. We focused mostly on the coupled nuclear/electronic
dynamics associated with two key electronic states. These states
are the 1A′ and 2A′ adiabatic electronic states or, equivalently,
certainΣ-like andΠ(A′)-like diabatic electronic states. A conical
intersection occurs between these states at collinear OHH
geometries, and previous more approximate TSH studies,34 and
vibrationally adiabatic coupled channel studies,35 have pointed
to the possibility of interesting nonadiabatic effects.

Most of our calculations were quantum wave packet calcula-
tions based on the real wave packet methodology.49,52 Our
largest calculations corresponded to total angular momentumJ
) 0 wave packet propagations, including all three internal
nuclear coordinates and the two electronic states within a
diabatic representation. Several single surface wave packet
propagations, and some TSH and vibrationally adiabatic coupled
channel calculations were also carried out for comparison. We
studied two different systems of coupled potential surfaces, a
semiempirical DIM system due to Kuntz, Niefer, and Sloan,30,31

and a recent ab initio system due to Dobbyn and Knowles.44,45

We confirmed that nonadiabacity is not an important issue if
one starts effectively on the 1A′ potential energy surface. This
is the surface that correlates with the ground electronic state of
water and the reaction dynamics involves insertion coupled with
some brief dynamics that can be associated with short-lived
water complexes. No barrier exists for reaction on this surface,
and significant reaction probabilities are seen for all collision
energies examined, including very low collision energies. The
dynamics of a wave packet initiated on, effectively, the 2A′
electronic state is much more interesting. In terms of theΣ and

kR(T) ) 1
5x 8

πµ(kBT)3∫0

∞
EcolσR(Ecol) exp(-Ecol/kBT)dEcol

(11)

σR(Ecol) )
π

kcol
2

∑
J)0

∞

(2J + 1)PR
J(Ecol) (12)

σR(Ecol) )
π

kcol
2

∑
l)0

∞

(2l + 1)Pl
R(Ecol) (13)
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Π(A′) diabatic representation we employed, an initial 2A′ state
correlates with theΠ(A′) state, which has a simple barrier to
reaction at collinear geometries. One might expect strong
nonadiabatic coupling (due to the conical intersection noted
above) such that in a diabatic representation the system would
remainon theΠ diabat throughout (i.e., very little “nondiabatic
coupling”). We do see evidence of this, particularly at collision
energies above the collinear barrier. However, at low collision
energies a new mechanism for reaction emergesselectronic
transitions at long range that allow amplitude to avoid having
to tunnel through theΠ barrier. This leads to small but
noticeable reaction probabilities even as the collision energy
approaches zero. The TSH and vibrationally adiabatic coupled
channel calculations also exhibit this behavior, further solidify-
ing our conclusions. It is also noteworthy that the TSH results
for theΠ initial state case agreed reasonably well with the wave
packet results, as just the opposite behavior has been found in
studies of other reactions.42,43 One significant difference as-
sociated with the present work is that the TSH calculations have
been done in a diabatic representation, rather than the usual
adiabatic representation, and the uncoupled diabats provide a
better zero order description of theΠ state dynamics.

We made estimates of the thermal rate constant for reaction
at two temperatures, 300 K and 1000 K. These calculations were
rather approximate, owing in part to the necessity of using
J-shifting46 and l-shifting28 techniques to inferJ > 0 reaction
probabilities fromJ ) 0 ones. We showed that at 300 K
nonadiabatic effects, especially the low collision energy mech-
anism noted above, could contribute 10% or more to the rate
constant. At 1000 K nonadiabatic effects, as well as the
contribution from the adiabatic 1A′′ surface, are much more
important and the rate constant is 20% larger than the single
surface result based on the 1A′ adiabatic surface.

In view of the uncertainties introduced in our estimates of
the rate constants (see section IIID), it is possible we are
overestimating the relative contribution of nonadiabatic and
excited state dynamics to the rate constants. It is therefore
important to carry out much more detailed studies. Future work
includes making betterJ > 0 estimates of the reaction
probabilities, as well as an examination of the effect of H2 initial
vibration-rotation state.59 It should be possible, for example,
to carry out helicity decoupled calculations in the spirit of ref
28. Theoretical estimates of the differential cross sections, and
how they are influenced by nonadiabatic effects, would also be
very welcome, owing to the interesting experimental data that
is becoming available.39 Finally, we note that there are many
other reactions with electronic states that behave as those in
Figure 1, so the present results provide significant motivation
for studying the role of excited electronic states more generally.
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